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1 Models for Transferable Utility

1.1 Nash’s bargaining theorem and relationship to transferable utility

Last time, we mentioned Nash’s bargaining theorem.

Theorem 1.1. There is a unique function F satisfying Nash’s bargaining axioms. It is the
function that takes S and d and returns the unique solution to the optimization problem

max
x1,x2

(x1 − d1)(x2 − d2)

subject to the constraints

x1 ≥ d1
x2 ≥ d2
(x1, x2) ∈ S.

We are talking about games with nontransferable utility, but this is also related to
games with transferable utility.

Example 1.1. Consider a transferable utility game with disagreement point d and cooper-
ative strategy with total payoff σ. Then the convex set S is the set of convex combinations
of lines {(ai,j + p, bi,j − p) : p ∈ R}. To maximize (x1 − d1)(x2 − d2), we set x2 = σ − x1
and choose x1 to maximize

(x1 − d1)(σ − x1 − d2) = −x21 + (σ − d2 + d1)x1 − d1(σ − d2).

This gives x1 = (σ − d2 + d1)/2.
The Nash solution is unique. See the text for a slick proof. The Nash solution satisfies

the bargaining axioms:

1. Pareto optimality: increasing, say, x1 increases (x1 − d1)(x2 − d2).
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2. Symmetry: You can check that this follows from uniqueness of the solution.

3. Affine covariance: α1x1 + β1 − (α1d1 + β1) = α1(x− d1).

4. Independence of irrelevant attributes: A maximizer in S that belongs to R is still a
maximizer in R ⊆ S.

Here is the idea of the proof of the theorem.

Proof. Any bargaining solution that satisfies the axioms is the Nash solution. For S and
d, if the Nash solution is a, find the affine function so that ψ(a) = (1, 1) and ψ(d) = (0, 0).
If the Nash solution is a = (1, 1) and d = (0, 0), then the convex hull of S and its reflection
are in {x1 + x2 ≤ 2}, so any symmetric, optimal F returns (1, 1) for this convex hull,and
hence, by IIA, for S.

The affine covariance property is not always easily evident. Consider the following
region S, and a region S′ that is the image of S under and affine transformation.

Here, it seems like Player 2 should have an advantage somehow, but the Nash solution is
(1, 1) for the region S′. Is this how players would choose a solution in real life?

1.2 Multiplayer transferable utility games

1.2.1 Allocation functions and Gillies’ core

Example 1.2. A customer in a marketplace is willing to buy a pair of gloves for $100.
There are three players, one with right gloves and two with only left gloves, and they need
to agree on who sells their glove and how to split the $100. This is more complicated than
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a two-player game: the players can form coalitions. Who holds the power and what’s fair
depends on how the different subsets of players depend on other players and contribute to
the payoff.

Definition 1.1. For each subset S of players, let v(S) be the total value that would be
available to be split by that subset of players no matter what the other players do. We call
v a characteristic function.

Example 1.3. In our glove example, we have the following characteristic function:

v({1, 2, 3}) = v({1, 2}) = v({1, 3}) = 100,

v({1}) = v({2}) = v({3}) = v({2, 3}) = v(∅) = 0.

Definition 1.2. An allocation function is a map from a characteristic function v for n
players to a vector ψ(v) ∈ Rn. This is the payoff that is allocated to the n players.

What properties should an allocation function have?

1. Efficiency: The total payoff gets allocated. That is,

n∑
i=1

ψi(v) = v({1, . . . , n}).

2. Stability: Each coalition is allocated at least the payoff it can obtain on its own. For
each S ⊆ {1, . . . , n}, ∑

i∈S
ψi(v) ≥ v(S).

The conditions are called Gillies’ core.1

Example 1.4. Let’s go back to the left and right gloves example.

3∑
i=1

ψi(v) = v({1, 2, 3}) = 100

ψ1(v) + ψ2(v) ≥ 100, ψ1(v) + ψ3(v) ≥ 100.

There is one solution: ψ1(v) = 100.

1Donald B Gillies is a Canadian-born mathematician, game theorist, and computer scientist at the
University of Illinois at Urbana-Champaign.
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Example 1.5. Consider a game where any pair of gloves sells for $1. The characteristic
function is

v({1, 2}) = v({1, 3}) = v({2, 3}) = v({1, 2, 3}) = 1,

v({1}) = v({2}) = v({3}) = v(∅) = 0.

Then
3∑

i=1

ψi(v) = v({1, 2, 3}) = 1,

ψ1(v) + ψ2(v) ≥ 1, ψ1(v) + ψ3(v) ≥ 1, ψ2(v) + ψ3(v) ≥ 1.

There are no solutions!

Example 1.6. Consider a game where single gloves sell for $1, pairs sell for $10, and
triples sell for $100. The characteristic function is

v({1}) = v({2}) = v({3}) = 1,

v({1, 2}) = v({1, 3}) = v({2, 3}) = 10,

v({1, 2, 3}) = 100.

Then
3∑

i=1

ψi(v) = v({1, 2, 3}) = 100,

ψ1(v) ≥ 1, ψ2(v) ≥ 1, ψ3(v) ≥ 1

ψ1(v) + ψ2(v) ≥ 10, ψ1(v) + ψ3(v) ≥ 10, ψ2(v) + ψ3(v) ≥ 10,

ψ1(v) + ψ2(v) + ψ3(v) ≥ 100.

There are many solutions!

As we can see, Gillies’ core, while reasonable, may not be the most accurate model.

1.2.2 Shapley’s axioms for allocation functions

Here are Shapley’s axioms for allocation functions.

1. Efficiency:
∑n

i=1 ψi(v) = v({1, . . . , n}).

2. Symmetry: If, for all S ⊆ {1, . . . , n} and i, j /∈ S, v(S ∪ {i}) = v(S ∪ {j}), then
ψi(v) = ψj(v).

3. No freeloaders: For all i, if for all S ⊆ {1, . . . , n}, v(S ∪ {i}) = v(S), then ψi(v) = 0.

4. Additivity: ψi(v + u) = ψi(v) + ψi(u).

Theorem 1.2 (Shapley). Shapley’s axioms uniquely determine the allocation ψ.
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